pyspark.pandas.DataFrame.to_spark_io¶
- 
DataFrame.to_spark_io(path: Optional[str] = None, format: Optional[str] = None, mode: str = 'overwrite', partition_cols: Union[str, List[str], None] = None, index_col: Union[str, List[str], None] = None, **options: OptionalPrimitiveType) → None[source]¶
- Write the DataFrame out to a Spark data source. - DataFrame.spark.to_spark_io()is an alias of- DataFrame.to_spark_io().- Parameters
- pathstring, optional
- Path to the data source. 
- formatstring, optional
- Specifies the output data source format. Some common ones are: - ‘delta’ 
- ‘parquet’ 
- ‘orc’ 
- ‘json’ 
- ‘csv’ 
 
- modestr {‘append’, ‘overwrite’, ‘ignore’, ‘error’, ‘errorifexists’}, default
- ‘overwrite’. Specifies the behavior of the save operation when data already exists. - ‘append’: Append the new data to existing data. 
- ‘overwrite’: Overwrite existing data. 
- ‘ignore’: Silently ignore this operation if data already exists. 
- ‘error’ or ‘errorifexists’: Throw an exception if data already exists. 
 
- partition_colsstr or list of str, optional
- Names of partitioning columns 
- index_col: str or list of str, optional, default: None
- Column names to be used in Spark to represent pandas-on-Spark’s index. The index name in pandas-on-Spark is ignored. By default, the index is always lost. 
- optionsdict
- All other options passed directly into Spark’s data source. 
 
- Returns
- None
 
 - See also - Examples - >>> df = ps.DataFrame(dict( ... date=list(pd.date_range('2012-1-1 12:00:00', periods=3, freq='M')), ... country=['KR', 'US', 'JP'], ... code=[1, 2 ,3]), columns=['date', 'country', 'code']) >>> df date country code 0 2012-01-31 12:00:00 KR 1 1 2012-02-29 12:00:00 US 2 2 2012-03-31 12:00:00 JP 3 - >>> df.to_spark_io(path='%s/to_spark_io/foo.json' % path, format='json')