pyspark.pandas.window.Rolling.min¶
- 
Rolling.min() → FrameLike[source]¶
- Calculate the rolling minimum. - Note - the current implementation of this API uses Spark’s Window without specifying partition specification. This leads to move all data into single partition in single machine and could cause serious performance degradation. Avoid this method against very large dataset. - Returns
- Series or DataFrame
- Returned object type is determined by the caller of the rolling calculation. 
 
 - See also - pyspark.pandas.Series.rolling
- Calling object with a Series. 
- pyspark.pandas.DataFrame.rolling
- Calling object with a DataFrame. 
- pyspark.pandas.Series.min
- Similar method for Series. 
- pyspark.pandas.DataFrame.min
- Similar method for DataFrame. 
 - Examples - >>> s = ps.Series([4, 3, 5, 2, 6]) >>> s 0 4 1 3 2 5 3 2 4 6 dtype: int64 - >>> s.rolling(2).min() 0 NaN 1 3.0 2 3.0 3 2.0 4 2.0 dtype: float64 - >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64 - For DataFrame, each rolling minimum is computed column-wise. - >>> df = ps.DataFrame({"A": s.to_numpy(), "B": s.to_numpy() ** 2}) >>> df A B 0 4 16 1 3 9 2 5 25 3 2 4 4 6 36 - >>> df.rolling(2).min() A B 0 NaN NaN 1 3.0 9.0 2 3.0 9.0 3 2.0 4.0 4 2.0 4.0 - >>> df.rolling(3).min() A B 0 NaN NaN 1 NaN NaN 2 3.0 9.0 3 2.0 4.0 4 2.0 4.0