pyspark.sql.DataFrameReader.csv#
- DataFrameReader.csv(path, schema=None, sep=None, encoding=None, quote=None, escape=None, comment=None, header=None, inferSchema=None, ignoreLeadingWhiteSpace=None, ignoreTrailingWhiteSpace=None, nullValue=None, nanValue=None, positiveInf=None, negativeInf=None, dateFormat=None, timestampFormat=None, maxColumns=None, maxCharsPerColumn=None, maxMalformedLogPerPartition=None, mode=None, columnNameOfCorruptRecord=None, multiLine=None, charToEscapeQuoteEscaping=None, samplingRatio=None, enforceSchema=None, emptyValue=None, locale=None, lineSep=None, pathGlobFilter=None, recursiveFileLookup=None, modifiedBefore=None, modifiedAfter=None, unescapedQuoteHandling=None)[source]#
- Loads a CSV file and returns the result as a - DataFrame.- This function will go through the input once to determine the input schema if - inferSchemais enabled. To avoid going through the entire data once, disable- inferSchemaoption or specify the schema explicitly using- schema.- New in version 2.0.0. - Changed in version 3.4.0: Supports Spark Connect. - Parameters
- pathstr or list
- string, or list of strings, for input path(s), or RDD of Strings storing CSV rows. 
- schemapyspark.sql.types.StructTypeor str, optional
- an optional - pyspark.sql.types.StructTypefor the input schema or a DDL-formatted string (For example- col0 INT, col1 DOUBLE).
 
- Other Parameters
- Extra options
- For the extra options, refer to Data Source Option for the version you use. 
 
 - Examples - Write a DataFrame into a CSV file and read it back. - >>> import tempfile >>> with tempfile.TemporaryDirectory(prefix="csv") as d: ... # Write a DataFrame into a CSV file ... df = spark.createDataFrame([{"age": 100, "name": "Hyukjin Kwon"}]) ... df.write.mode("overwrite").format("csv").save(d) ... ... # Read the CSV file as a DataFrame with 'nullValue' option set to 'Hyukjin Kwon'. ... spark.read.csv(d, schema=df.schema, nullValue="Hyukjin Kwon").show() +---+----+ |age|name| +---+----+ |100|NULL| +---+----+